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LETTER TO THE EDITOR 
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Abstract. We show that in the three-dimensional Ising model at the critical temperature 
the fractal dimension of the touching damage, determined by the box counting method, 
asymptotically converges to the expected value d ,  = d - p /  U. In contrast, the finite-size 
scaling analysis indicates for the touching damage an effective fractal dimension whose 
value is 20% smaller. The expected d ,  is, however, recovered again when instead of the 
system size L the quantity L/ln L is used as a scaling variable. This behaviour could be 
explained by the recently discovered dynamical multiscaling. 

In recent years a novel approach to the analysis of dynamical properties of spin systems 
has been successfully introduced. The basic ideas originated from cellular automata 
and dynamical systems theory and mainly consist of considering the wandering of a 
spin configuration in phase space to reach equilibrium as a dynamical process. In 
fact, once the dynamics of the system is chosen (e.g. Glauber, heat bath, Q2R, etc), 
this defines trajectories in phase space moving toward equilibrium. One can then study 
how much these trajectories are sensitive to the initial conditions, that is if two initially 
close configurations still remain close during their evolution and eventually merge or 
else they move apart to very different states. This type of analysis is often referred to 
as damage spreading. 

The concept of damage spreading has been originally introduced in the Ising model 
[ l ]  by analogy with cellular automata. Two configurations of Ising spins (T: and a:, 
with ui = rtl, are considered on a lattice of N sites; then the damage or Hamming 
distance can be defined as 

This quantity physically represents the fraction of spins that differ between the two 
configurations and therefore allows us to monitor the time evolution of the relative 
distance of the two configurations in phase space. In order to do this, the two 
configurations must be submitted to the same statistical noise, that is the same sequence 
of random numbers is used to update corresponding spins in the A and E configurations. 

Depending on the chosen dynamics and the initial distance D(O), very different 
results can be obtained [l-41. In most cases, the damage shows some critical behaviour 
at or near the Ising critical temperature [l-61. Furthermore, the concept of damage 
spreading has also given interesting insights into the study of spin glasses in a zero 
[2,7] and non-zero [8] magnetic field. 
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One of the major questions in the field was then to determine if any relation existed 
between the so-called dynamical transition, where the damage goes to zero, and the 
well known thermodynamical transition of the magnetic system. It has been shown 
[3] that for the Ising model submitted to the heat bath dynamics the damage between 
two configurations, respectively with plus and minus boundary conditions, is equal to 
the magnetisation. Moreover, the probability of damage to a site at a given distance 
from a fixed damage at the origin is proportional to the pair correlation function and 
that the sum over all sites of such probabilities is then proportional to the susceptibility. 
Looking at the damage spreading with heat bath dynamics is therefore a different way 
to study the thermodynamical transition in the Ising model and turns out to be a more 
efficient way to numerically evaluate correlation functions. 

Within this scenario the cloud of damaged sites visualises the spin fluctuations, 
that is it contains those spins which are effectively correlated to the origin, cancelling 
contributions due to statistical noise. The damage cloud is therefore reminiscent of 
the droplet [9] in an Ising model, where neighbouring spins in the same state belong 
to the same droplet with a probability p B  = 1 - It can, in fact, easily be derived 
by the following argument that the fractal dimension of the damage cloud is equal to 
df = d - p /  U, the fractal dimension of the Ising critical droplet. 

Let us consider a cloud of damaged sites spanning the system of size L and touching 
its boundaries. The mass of such a cloud, D -  Ldf,  is given by all the damaged sites 
correlated to the origin kept damaged. Namely, D = P (  L )  I,“ r - ‘d-2+r) ’  r d - ’  dr, where 
P (  L )  = Ldf/ Ld is the probability for the cloud to touch the boundaries of the system. 
By performing the integration, one then obtains D - Ld+2-” -d f  , and using 2 -  77 = 
d - 2 p /  v the relation df = d - p /  v. To confirm this picture, the numerical determination 
of the fractal dimension of the damage cloud in the 2~ ferromagnetic Ising model at 
its critical temperature has given a value df = 1.87 iO.02, in good agreement with the 
exact value df= d - p /  v = 15/8 of the fractal dimension of the droplets. 

If the situation for the two dimensional king model is quite well established, the 
three-dimensional case still poses some open questions. A recent preprint [ 101 focusing 
on the finite-size scaling analysis of the damage cloud for the 3~ Ising model at critical 
temperature with heat bath dynamics, indicates as a fractal dimension a value close 
to 1.9 as opposed to the expected value 2.5 predicted by df=  d -PIU. In order to 
explain this discrepancy, it has been suggested [l l]  that the fractal dimension of a 
cloud of damage allowed to grow up to the boundaries of a box of fixed size, is indeed 
equal to df = d - 2p/ U. Moreover, such an argument could also try to account for the 
predictions of the two-dimensional data, due to the small value of p in this case. 
However, the error bars estimated for the value of the fractal dimension seem actually 
to exclude the value 7/4 predicted by this argument. 

The question of whether the fractal dimension of the damage cloud is actually 
given by d -p/v has also been addressed for the two-dimensional Kauffman model. 
Previous numerical simulations [ 121 had in fact indicated that df was instead rather 
close to d - 2p/ v. More recent calculations [ 131 have accurately determined the value 
of the critical threshold for the damage and finally re-established the agreement of df 
with d - p /  U. 

In this letter we attempt to clarify the question of whether the fractal dimension 
of the damage cloud in the three-dimensional ferromagnetic Ising model is indeed 
numerically given by df = d - p /  v. 

In order to do so, we considered a configuration of Ising spins on a cubic lattice 
of linear size L and with periodical boundary conditions. The time evolution of the 
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spins follows the heat bath dynamics, namely the spin ui at site i will be up at time t 
with a probability 

the sum being over the spin's nearest neighbours at site i. All the spins belonging to 
each of the two sublattices, in which the cubic lattice splits, are updated in parallel. 
The initially random configuration is thermalised to equilibrium at the critical tem- 
perature T = T, = 4.51, then two copies of such a configuration are made, U? and U:, 
where the spin at the origin is fixed up and down respectively. This damage at the 
origin will be kept at all times and it acts as a continuous source from which damage 
spreads out. The two parallel configurations then evolve following the heat bath 
dynamics with the same random number used to update corresponding spins. 

The simulation is stopped when the damage finally touches the boundary of the 
lattice and a new configuration is generated. We analyse system sizes from L = 10 to 
L = 98, the thermalisation time ranging from 2000 to 5000 time steps and the statistics 
varying from 15 000 configurations for the smallest system size to five configurations 
for L = 9 8 .  The whole simulation took about 40 hours of CPU time on the Cray X M P .  

To calculate the fractal dimension of the damage cloud, we first analysed the data 
by the box counting method. The mass of the cloud, that is the number of damaged 
sites, within a box around the origin is calculated for concentric boxes. The double 
logarithmic plot of the mass as a function of the box radius then provides the fractal 
dimension of the cloud. Figure 1 shows the data for two different system sizes. In the 
intermediate region the curves have a straight line behaviour, whose slope d," is 

0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.0 

R 

Figure 1. Log-log plot of the mass of the damage cloud D within a sphere of radius R 
against R for two different system sizes: 1900 configurations of L = 30 (0) with 4000 time 
steps of thermalisation and a slope d y  = 1.45; 187 configurations of L = 70 (0) with the 
same thermalisation time and d 7  = 1.73. 
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substantially smaller than df = d - p /  U = 2.5 but increases slowly and steadily with the 
system size. 

To account for this size dependence, we have analysed the corrections to scaling 
for the data. Figure 2 shows the value of the measured fractal dimension d;" for a 
given system size as function of l / ln  L, where a logarithmic correction to scaling of 
the form d;" = d,(l+a(In L ) - ' )  has been assumed. The data do indeed show a good 
linear behaviour and tend asymptotically to the value 2.5 in good agreement with 
dF = d - p /  U = 2.48 [ 141. We have also considered the possibility of a correction to 
scaling of the form d;" = dX1+ aL-"). This form is also well satisfied by the data for 
quite a small correction exponent w = 0.3, which numerically is not inconsistent with 
a logarithmic correction. 

Since independent calculations [ 101 have indicated that in a finite size scaling plot 
df is rather closer to 1.9 than 2.5, we next analysed the scaling of the mass of the whole 
cloud at the time when it first touches the boundary of the lattice as function of the 
system size. The effective fractal dimension at a given size as function of l / ln  L does 
indeed extrapolate asymptotically to a smaller exponent close to 1.9 (figure 3(a) ) .  

We know from figure 2 that the numerical results can be reconciled to the theory 
if one assumes logarithmic corrections to scaling. For this reason we have tried to fit 
the data of figure 3 ( a )  by a curve of the form d;"= df+b/ ln  L+ ln [ l+a / ln  L]/ln L, 
where the last term corresponds to the correction to scaling and dr= d - p /  v. We find 

I I 1 1 I I  
0 0.1 0.2 0.3 0.4 

1ILn L 

Figure 2. The effective fractal dimension d;" measured by the box counting method as 
function of I/ln L. The arrow indicates the extrapolated value df = d -@/U = 2.5.  

1 I I n  l L / l n L )  
0 ~ , o.12 , 014 , 0.; , o;e 

0 0.1 0.2 0.3 0.4 

l l l n  L 

Figure 3. The effective fractal dimension In D/ln L as function of l / ln  L (lower scale) 
giving an extrapolated value d, -  1.9 ( x ) .  The same data plotted by using, instead of L, 
the variable L/ln L (upper scale) recovering as extrapolated value d, = d - p /  U = 2.5 (0). 
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that it is not possible to find any pair of constants a and b to convincingly fit the data 
so that the deviations from the expected value observed in figure 3 ( a )  are not consistent 
in this case with logarithmic corrections to scaling. 

Another possible explanation for the extremely slow convergence might be the 
existence of a logarithmic prefactor, namely a relation D - (L/ln L)dr for the mass of 
the cloud. In order to check this point, we have looked at the scaling of the mass of 
the damage cloud as a function of this new variable L/ln L. The effective fractal 
dimension as function of l / ln( L/ln L )  does indeed extrapolate to the expected value 
2.5 predicted by df= d - p / u  and obtained by the box counting method (figure 3(b)). 

If, as the data indicate, a logarithmic prefactor exists for the effective fractal 
dimension of the damage cloud at the touching time, one should consistently also find 
this prefactor by the box counting method. For this reason we have also plotted the 
data of figure 1 in a log-log plot as a function of R/ln R instead of R. We find that 
the data do not fall on a straight line, seemingly excluding the possibility of a logarithmic 
prefactor in this case. 

Moreover, a logarithmic prefactor cannot be explained by a relation such as 
R = L/ln L between the radius of gyration and the system size. In fact, the radius of 
gyration R of a damage cloud touching a box of size L is proportional to L itself and 
not to L/ln L (figure 4). As seen from figure 4(b), if a general relation of the type 
R - (L/ln L)" is assumed, one finds x = 1.5 and not unity. 

lo2 

10 

1 

Figure 4. Log-log plot of the average radius of gyration against L with a slope = 1.0 ( a ) ,  
and against L/ln  L with a slope = 1.5 ( b ) .  The symbols correspond to the two touching 
conditions: (0) at least one site on the boundary is damaged; ( x )  at least one site is 
damaged on each of the three boundary planes (100,010,001). 

As a consequence, the situation seems rather contradictory: in order to reconcile 
our numerical data with the theory prediction we have to assume in one case logarithmic 
corrections to scaling, and in the other case a logarithmic prefactor, without being 
able to reach consistency using either logarithmic corrections or a logarithmic prefactor 
in both cases. 

There could be, however, a possibility to explain this scenario. I t  has recently been 
shown El51 that the dynamical scaling of the structure function of growing domains 
in a nucleation problem has a much richer behaviour, also expected to be characteristic 
of other growth phenomena. By an exact analytical solution of the time-dependent 
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Ginzburg-Landau model a novel form of scaling has been detected, which finds its 
origin in the existence of two scaling lengths in the problem, one marginally different 
from the other. Because of the resulting so-called multiscaling, an infinity of growing 
exponents is then obtained by continuously varying a given characteristic parameter. 

We assume now the possibility of a similar type of multiscaling to also hold in the 
damage spreading problem. In order to do so, for each cloud of a given radius of 
gyration R ,  we fix the value of the parameter x and we calculate the mass m ( x )  
contained within a shell confined between r = xR,  and r ’ =  ( x +  l ) R g .  We look then 
at the scaling dependence of the quantity m ( x )  as function of R,  at a fixed value of x. 

If dynamical multiscaling holds, a scaling of the form 

should be found for the density p ( r ,  R,) and the fractal dimension dr should con- 
tinuously depend on the parameter x = r /  R , .  The multiscaling would then reflect the 
rich internal structure of the cloud where shells with different x do exhibit independent 
scaling exponents. The expected value of df would then be recovered in the limit x + 0. 

One can evaluate the total mass of the cloud D by integrating (3) 

f ( x )  dx (4) D K  loL p(  r, R,)rd- ’  d r  = R d , ( x ) X d r ( x  )- 1 

and assuming that d d x )  = ddO) - px’, one finds by saddle point integration 

Da- 
(In R ) Y  

where y depends on the form of f ( x ) .  This is actually the general expression for a 
scaling variable of the log-prefactor type discussed above. If on the contrary d,-(x) is 
constant for small x by similar arguments one finds a logarithmic correction. The form 
of d d x )  could well differ if the averages are taken over all the clouds or only over the 
touching ones. This difference in averaging could very well explain the discrepancy 
between the data of figure 1 and figure 3. The hypothesis of multiscaling made to 
obtain this result is currently the object of further investigation. 

Since the physical picture behind the multiscaling behaviour is that the outer regions 
of the spreading damage cloud have lower fractal dimensions than the inner regions, 
we measure the number of sites in the damage cloud at touching distance, i.e. on the 
boundary of the system (figure 5 ) .  As a function of the system size the number of 
damaged sites on the boundary does remain constant and about equal to one. This is 
no longer valid if, for instance, one uses as a touching condition the requirement that 
the cloud touches the boundaries in all three directions at the same time. In this case, 
the damage at the boundary does show some power law dependence on the system 
size with an exponent roughly equal to 0.75 (figure 5). It is however worth stressing 
that the scaling behaviour of the whole damage cloud is independent of the touching 
condition, which only affects the amplitude factor in the mass-radius relation. The 
fact that different touching conditions show different scaling behaviours hints to the 
existence of the multiscaling given in (3). 

In conclusion, we have found that the damage clouds introduced in [3] show a 
very slow convergence toward the expected fractal dimension df = d - p /  v. This can 
be explained either by a logarithmic correction or by a logarithmic prefactor. The 
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Figure 5. Log-log plot of the mass of the damage cloud on the boundaries of the lattice 
at the time of touching against L using the two touching conditions as in figure 4. For the 
touching condition in all three directions the scaling exponent is equal to about 0.75. 

scenario is compatible with the multiscaling behaviour of the radial density of the 
clouds, a point which is currently under investigation. 

HJH thanks the Center for Simulational Physics in Athens, GA for hospitality and 
computer time. 
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